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Space group Clebsch-Gordan coefficients: 11. Computer 
generated special solutions of the multiplicity problem by 
Dirl's method 
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Abstract. In paper I of this series, special solutions of the multiplicity problem were 
established for wavevector selection rules (WSR) of types I and I1 occurring in the reduction 
of Kronecker products of space group unirreps. In this paper, a computer program based 
on Dirl's method is described which has been used to show that special solutions of the 
multiplicity problem exist for all WSR of type I11 in the reduction of Kronecker products 
of Miller and Love matrix unirreps in all 230 (single and double) space groups. 

1. Introduction 

In this paper, which is the second of three papers on space group Clebsch-Gordan 
(CG) coefficients, we consider special solutions of the multiplicity problem for wave- 
vector selection rules (WVSR) of type 111 occurring in the reduction of Kronecker 
products of space group unirreps. In the first paper (Davies 1986, hereafter referred 
to as DI)  special solutions of the multiplicity problem were established for all WVSR 

of types I and 11. Here we describe a computer program, using the method of Dirl 
(1979), which has been used to show that special solutions of the multiplicity problem 
exist for all WVSR of type I11 in the reduction of Miller and Love (1967) (hereafter 
referred to as ML)  matrix unirreps in all 230 (single and double) space groups. In the 
following, we use the same notation and definitions as in DI. Equations in DI are 
referenced by the prefix 'I' followed by the equation number. 

2. Special solutions of the multiplicity problem for WVSR of type I11 by Dirl's method 

For a WVSR (1.7) of type 111, there is no simple criterion, like (I.22), for the existence 
of a special solution of the multiplicity problem. A WSR of type 111 is distinguished 
from those of type I or type I1 by the fact that the triple intersection group P>,$"o is 
non-trivial (see (1.13)-(1.16)). However, Dirl (1979) has given a method to search for 
special solutions of the multiplicity problem in the case of non-trivial triple intersection 
groups. We reproduce the essential steps of his method here in order to describe more 
conveniently the algorithm on which our computer program is based. As in (I.22), we 
prefer to express all appropriate equations in terms of the allowed matrix unirreps 
r(Ks") of the little groups G", q E AEZ, instead of the projective matrix unirreps R" of 
the little co-groups Pq (=Gq/T).  This is done because the r(x.q', rather than R", are 
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tabulated in M L  and in Cracknell et a1 (1979) (hereafter referred to as CDML). The 
use of r(K9q) also has the advantage that terms involving the factor systems do not 
appear explicitly in the equations which helps to reveal their structure. 

Recall that the CG matrix (1.11) is built up column by column. For given com- 
ponent multiplicity (see (1.9)) 

the task is to find special column indices (eo, c,; e:, c:) of the Kronecker product 
A ( K . 4 )  @ A ( K ' , q ' 1  so that the multiplicity index 

(1.12) (b.6 ' )  w = ( e " , c , ; e ; , c ; )  = ' 9  2, ' ' * I m ( K , q ) ( K ' , q ' ) : ( r o . q o )  

when a 'special solution of the multiplicity problem' has been found. The special 
column indices above are chosen in such a way that all the elements of the CG matrix 
(1.1 1) in the columns labelled by ( K ~ ,  (e, Cr')qo) can be computed using a single explicit 
formula in terms of only the allowed matrix unirreps r(""', r(K'3q') ,  r ( K o , q o )  . The steps 
for choosing these special column indices are as follows (Did 1979). 

( a )  Starting with ( K ~ ,  (6, 6 ' )qo ) ,  and assuming mnj,q.qq'()K.,q.):(~O,qol > 0, construct the 
triple intersection group 

p:,%i'o = (6pqe-l) ( (~ 'pq 'a ' - ' )  pqo. (2) 

( b )  Decompose Pqo into left cosets with respect to the subgroup P?,$iqo and select 

( c )  Generate lPqo: P$,$iqol pairs of fixed left coset representatives Cj, 3; of Pq, Pq' 

( 3 a )  

left coset representatives U, E p40: p$,5iq0. 

respectively, in P: 

C/ = v/ez/- E P : P4 
e; = v / p ' z ; - I  E p:  pq' 

where zJ E Pq 

where zj E Pq'. ( 3 6 )  
The zI ,  21 in ( 3 )  are uniquely determined by the requirement that a,, 6; must be 
elements of the sets of previously chosen fixed left coset representatives P: P', P: Pq' 
respectively. 

( d )  For each of the pairs el, in (3), define the column vectors 
Baa; I , c =  1, 2, . . . , n,, c ' =  1,2, .  . . , n,., (giving a total of 
nKnK,lPqo: P:,$iqol vectors) by 

K 4 ) ( K ' , q ' ) ~ o ( ~ , 4 0 ) ( b , , C ~ b ' . C ' i  

where Aq(y, y') = 8ypq ,ycpq  for all y, ?'E P, u0 is a fixed integer in the range 1 s a o s  nKo, 
2 is the identity element of P, ?EP:P', d =  1,2 , .  . . ,  n,, ?'EP:P'', d ' =  1,2, .  . . , n K , .  

( e )  The square of the norm of a column vector (4) is equal to its 'diagonal' element: 
I I B : ~ ; P ) ( K ' , q ' ) ; ( * o . 4 o i ( ~ , . C ; b ; , C I )  2 II 



Space group Clebsch - Gordan coeficients I I  843 

x ~ ~ q ' [ ( ~ k ~ ~ ( ~ ~ : k ) ) - l ( p l ~ ( p ) ) ( e j ; _ / ~ ( e , ) ) I  

X r%;q')[m I T ( e L ) ) - ' (  p I T( p))(ej 1 T ( e ~ ) ) l r ~ ~ ) * [ ( p  I T ( p ) ) ]  (6) 

vanishes. 
(g) The space spanned by the column vectors (4) has dimension m i ~ ~ ) ~ l r . , q . ) ; ( K o , q o , .  

If, by using ( 5 )  and (6), m ~ ~ ~ ~ ' ~ K , , q , ~ ; [ K o , q ~ )  pairwise orthogonal vectors, of non-zero norm, 
~ ~ . q ~ ( * ' . q ' ) ; ( K o , r l o ~ ~ ~ ~ , C ~ ~ ~ ~ , , C ~ ~  (a a') 

ea0 = '> 2> ' ' '  I m ( K ~ q ) ( K ' , q ' ) ; ( K o , q o )  

can be found, then the multiplicity index w is identified with the special column indices: 

(7) (*,a') 
w = (ec, c,; e;,  c:) = ' 7  2, ' ' ' 9 m ( K , q ) ( K ' , q ' ) ; ( K o , q o )  

and we then have a 'special solution of the multiplicity problem'. When such a special 
solution can be found, an explicit expression exists for all elements of all the columns 
labelled by ( K ~ ,  (5, 6 ' ) q o )  (Did 1979). 

As in DI, the generalisation of steps ( a ) - ( g )  to 'double' space groups is trivial (Did 
1981). 

Dirl (1981) conjectured that the M L  space group matrix unirreps might yield at 
least some special solutions of the multiplicity problem and we set out to investigate 
this using a computer program. 

3. Program 

We have written a program in A L G O L ~ O  for a DEC System 10 computer to calculate 
CG coefficients for Kronecker products of (single and double) space group unirreps 
and the first stage of this program is to look for special solutions of the multiplicity 
problem. A description of the second stage-the actual calculation of the CG coefficients 
themselves-is given in paper 111 of this series. For simplicity, the description in this 
section is given in terms of single groups; the extension to double groups is straightfor- 
ward, as indicated at the end of 0 2. 

All the ML space group matrix unirreps in CDML are available on magnetic tape. 
The WVSR and component multiplicities for Kronecker products of all space group 
unirreps, involving non-trivial little co-groups P', P', which are published in Davies 
and Cracknell (1979) and Cracknell and Davies (1979), are also available on magnetic 
tape. The program has been designed to work with any of the 230 space groups. The 
algorithm, on which the program is based, may be briefly described as follows. 

( a )  For a given space group the following data are input. 
( i )  The M L  allowed matrix unirreps r (Ksq)  for all essentially inequivalent q vectors 

in the fundamental domain ABZ. 
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( i i )  The WVSR and component multiplicities (see (1.7) and (1.9) respectively) for 
A(K'sq ' )  of space group unirreps A(Ksq)  and A(K'*q') 

(iii) The group multiplication table for the crystal point group P and the point 

( b )  Choose and $x, once and for all, the left coset representatives ? E  P: Pq for all 

( c )  (i)  Select, in turn, a Kronecker product A(K*"OA'K'+q'' in ( a )  (ii) above. 
(ii) Select, in turn, a WVSR (see (1.7)) for that Kronecker product and generate the 

IPqo: P$'ol pairs of fixed left coset a,, 6; given by (3) .  
( i i i )  Select, in turn, a non-zero component multiplicity ml~~) ' c 'K. ,q . , ; i~O,qOl  for that 

WVSR. Fix a ,  ( 1  L a,,< nuo) and by using ( 5 )  and (6), select from the nKnK,IPqo: P?,$iqol 
column vectors 

all Kronecker products 
having non-trivial little co-groups Pq and Pq' respectively. 

group transformation matrices for the primitive lattice vectors. 

essentially inequivalent q vectors in ABZ. 

j = 1 , 2 , .  . . , P $ $ ~ O ~ ,  c = 1 , 2 , .  . . , n, ,  c' = 1 , 2 , .  . . , n , . ,  K q ) ( ~ ' . 4 ) ; ( K o , P O ) ( $ , C ; b ; . C ' )  BA; 

a maximal set of non-zero, pairwise orthogonal, vectors, which may be indexed by 
If - (a a') 

('0, 'U; 'L), = ' 9  2, ' '  ' 9 m ( K : q ) ( K ' , q ' ) ; ( , o , q o ) '  

- (6.6') - (6.6'1 
m ( K , q ! ( K ' ,  q' l ; (KO,qO)  - m ( K , q ! ( K ' , q ' ) ; ( K o , q o )  

then a special solution of the multiplicity problem has been found and the multiplicity 
index w may be identified with these special column indices of the Kronecker product: 

(a 6') 
w = (e", c,; e;, c:) = ', 29 ' '  ' > m ( K : q ) ( K ' . q ' ) ; ( K o , q r , ) '  

If 
- (a,@') (,?,a') 

m [ , , q ) ( l ' , 4 ' ) ; ( * o , 9 , )  m ( K . 4 ) ( ~ ' , q ' ! ; ( * . o . q o )  

then a Gram-Schmidt orthogonalisation procedure is required as described by Dirl 
(1979). 

If 
- (6.6') 

m ( ~ , q ) ( K ' , q ' ) ; ( K o , q " )  ' m l ~ ~ ~ ) ' j K ' , q ' ) ; ( K o . 4 0 )  

then a failure has occurred due to an error in the program or the data. 

4. Results 

The program was run for all 230 (single and double) space groups for all Kronecker 
products AiK' ,q ' )  involving non-trivial little co-groups Pq and Pq' and which are 
published by Davies and Cracknell (1979) and Cracknell and Davies (1979). 

For every value of the component multiplicity m j ~ ~ l ' ; ( ) K . , q . ) ; ( K o , q o )  a special solution of the 
multiplicity problem was found, 

The value of a,  in (4)-(6) was fixed at unity and it was not even found necessary 
to alter this value. This splendid result means that the calculation and tabulation of 
the CG matrices is considerably simplified. Dirl (1981) conjectured that the M L  matrix 
unirreps could yield at least some special solutions of the multiplicity problem. The 
fact that the above computer program found special solutions in every case came as 
a complete surprise. It would seem that there is latent structure in the M L  matrix 
unirreps to account for this. The nature of this structure, if it exists, is unknown to 
this author at present. 
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It is interesting to note that there is considerable overlap between the set of WVSR 

considered in D I  and those considered here. In  D I  special solutions of the multiplicity 
problem were established for all WVSR of types I and 11. In Davies and Cracknell 
(1979) and  Cracknell and Davies (1979), all WVSR of type 111 are tabulated. But also, 
there are many W V S R  of types I and I1 (see 8 C of Dirl (1979) and (1.14)-(1.16) of 
DI ) ,  and so the results of D I  are consistent with the results reported here using the 
computer program. 

The running of the program for all 230 (single and double) space groups was 
carried out on the DEC System 10 computer at the University College of North Wales, 
Bangor during the months September to December 1982. Typical run times were 
10 min for P2,3 (198) and 3 h for Pm3m (221). The total run time for all groups was 
approximately 75 h. 

The example to be found in paper I I I  of this series will serve two purposes. Firstly, 
it will illustrate the solving of the multiplicity problem with which we are concerned 
in this paper. Secondly, it will illustrate the complete construction of the CG matrix 
for which the solution of the multiplicity problem is the first stage. 

5. Conclusion 

We have shown, by computer, that for all 230 (single and double) space groups, the 
Miller and Love (1967) (induced) matrix unirreps, as extended by Cracknell er a1 
(19791, possess the remarkable property that they provide special solutions of the 
multiplicity problem for all wavevector selection rules of type I11 occurring in any 
Kronecker product of space group unirreps. Using the special solutions of the multi- 
plicity problem established here and in paper I, it will be shown in paper I11 that all 
elements of a Clebsch-Gordan (CG)  matrix for the reduction of any Kronecker product 
of space group unirreps can be computed using a single explicit formula in terms of 
only the Miller and Love allowed matrix unirreps of the little groups occurring in the 
Kronecker product and  its CG series decomposition. 
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